
Using Inputs and Context to Verify User Intentions in
Internet Services

He Shuang, Wei Huang, Pushkar Bettadpur, Lianying Zhao, Ivan Pustogarov,
David Lie

University of Toronto
{he.shuang,wei.huang,pushkar.bettadpur}@mail.utoronto.ca

{lianying.zhao,i.pustogarov,david.lie}@utoronto.ca

ABSTRACT
An open security problem is how a server can tell whether
a request submitted by a client is legitimately intended by
the user or fakes by malware that has infected the user’s
system. This paper proposes Attested Intentions (AINT), to
ensure user intention is properly translated to service re-
quests. AINT uses a trusted hypervisor to record user inputs
and context, and uses an Intel SGX enclave to continuously
verify that the context, where user interaction occurs, has
not been tampered with. After verification, AINT also uses
SGX enclave for execution protection to generate the service
request using the inputs collected by the hypervisor. To ad-
dress privacy concerns over the recording of user inputs and
context, AINT performs all verification on the client device,
so that recorded data is never transmitted to a remote party.
ACM Reference Format:
He Shuang, Wei Huang, Pushkar Bettadpur, Lianying Zhao, Ivan
Pustogarov, David Lie. 2019. Using Inputs and Context to Verify User
Intentions in Internet Services. In 10th ACM SIGOPS Asia-Pacific
Workshop on Systems (APSys ’19), August 19–20, 2019, Hangzhou,
China. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3343737.3343739

1 INTRODUCTION
A long-standing problem in Internet systems security is how
a service can ensure whether a request received from a re-
mote client1 is user-intended. We begin by reviewing some
1In this paper, we use the term client to denote any computing device,
including smartphones, PCs and even embedded/IoT devices.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
APSys ’19, August 19–20, 2019, Hangzhou, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6893-3/19/08. . . $15.00
https://doi.org/10.1145/3343737.3343739

of these solutions, and show how they fall prey to straightfor-
ward attacks commonly used by Internet miscreants today.

Consider an online payment service where Alice wishes
to pay $100 to Bob. An attacker, Mallory, wishes to forge a
request that will cause Alice to pay $1000 to Mallory instead.
The most basic attack is for Mallory to steal login/password
credentials from Alice and send a request for such a payment
to the service. This attack is prevented by having appropriate
authentication mechanisms. Traditional username/password
authentication can be further enhanced by multi-factor au-
thentication, which adds additional lines of defence beyond
the username and password.

However, things change if Mallory is able to find a vulner-
ability in Alice’s client that allows Mallory to install her own
malicious software (i.e., OS-level malware). This gives Mal-
lory the capability to perform client-side attacks. A strong
attacker may attempt to tamper with the execution of soft-
ware to affect the integrity of the service request; we call
these attacks Execution Tampering. Execution tampering
can occur at any level of the system (kernel or userspace), but
the salient points are 1) the attack is stealthy and 2) it works
even if the user acts correctly (i.e., all her actions are consis-
tent with her intentions). Execution tampering requires the
malware to gain privileges on the victim system, a situation
not always possible, and can lead to scenarios wherein an
attacker can only alter the display but not the code execu-
tion. Our second type of attack is Context Forgery, where
the user interface (UI) is altered in a way to affect user per-
ception and lure them into carrying out unintended actions.
To give an example, as Alice is entering $100 as the trans-
action amount, the attacker intentionally blocks one zero
and displays $10, Alice might be fooled in believing that she
has only entered $10 instead of $100. If Alice enters another
zero, the malicious attacker can carry out a transaction of
amount $1000 instead of user intended $100. In this case,
Alice’s input occurs in an altered context under her impaired
perception. The salient points for context forgery are that 1)
user interaction does not properly follow user intention and
2) it works even with protected execution.
There exist a number of proposals to defeat such client-

side attacks. While many operate purely at the OS-level

https://doi.org/10.1145/3343737.3343739
https://doi.org/10.1145/3343737.3343739
https://doi.org/10.1145/3343737.3343739

(i.e., click-jacking defenses) [16, 31], and thus would fail
against an attacker with OS-level privileges, a number of
defenses assume a compromised OS. For example, trusted
computing [2, 4, 17, 23–25, 34] allows clients to attest the
integrity of software components to a remote party. However,
they are incomplete as they cannot assert anything about
the integrity of inputs given to the attested components, or
the context under which the user gave those inputs.
Still other proposals attempt to combine trusted comput-

ingwith checking for external inputs [10, 15]. However, these
proposals do not bridge the semantic gap [8, 18] that exists
between raw inputs collected by the hardware and the con-
text under which the user generated the inputs. For example,
NAB checks that there were external inputs around the time
a user request is generated, opening the door for a context
forgery attack where the attacker harvests the user activity
on an unrelated application, while the malware sends the
forged request on a security-critical application (i.e., pay-
ment app). This has further led to proposals that attempt to
better link user input with an outgoing request. For example,
Gyrus [19] ensures that an outgoing request contains input
typed by the user. However, this is insufficient as the context
where the input occurs is not validated (e.g., only user-typed
data is checked). For example, a context forgery attack can
be done by simply swapping “OK” and “Cancel” buttons. Fi-
delius [12] and VButton [20] implement a trusted display in
parallel with an untrusted display; the context where a user
sits consists of both displays. However, studies have shown
that such approaches are ineffective, and an attacker that is
only able to control the untrusted display can still affect the
user’s perception [13].

From this, a correct solution requires that a) the execution
of code should be protected from tampering, b) the inputs
provided by the user should be bound to the request and c)
the context under which the user provides the inputs must
be verified. No previous work has done all three and none
are able to do (c) effectively.
We propose Attested Intentions (AINT, we use AINT to

mean the system and Attested Intention to mean a verified
request), which attests to not only the integrity of request
generation, but also the coherence of the input and its context.
For example, to prevent forgery of a payment request, the
input could be the keystrokes of the user filling out the pay-
ment form and the mouse moves to click the “Pay” button.
Similarly, the user context could be screenshots showing
the interaction of the user with the website. This, when
combined with information about the execution integrity of
the client, allows the service to determine whether requests
are legitimate or forged. AINT protects against execution
tampering and context forgery at the same time. To protect
against execution tampering, a trusted hypervisor collects
user inputs and processes them inside a userspace Intel SGX

enclave, saving the necessity to trust the entire software
stack. To protect against context forgery, AINT validates
what a user sees against what is expected by the service
and binds the result to the request. With AINT, an attacker
can no longer forge a request, send the request while the
user is interacting with an unrelated application, or alter the
context where the request is generated.
AINT verifies the interaction locally on the user’s client

device and then cryptographically attest to the server that the
Attested Intention generated on the client device is consistent
with the request sent by the client device. This allows the
service to receive assurances that the request is legitimate
without having access to the data collected by AINT, which
remains local to the client device.
Contributions. We make the following contributions.
• We identify two types of attacks: execution tampering
and context forgery, which can be used to violate user
intention and send altered service requests.
• We propose Attested Intentions as a solution to both
execution tampering and context forgery that ensures
any service request received by a service provider, is
user-intended.
• We take user privacy into account by not sharing any
private information with any remote party.

2 THREAT MODEL AND GOALS
We assume a powerful remote attacker who has full control
of the OS. We further assume our attacker has the ability
to read or write any unencrypted memory and to execute
arbitrary code on the client. However, we assume the service
deploys multi-factor authentication, meaning that OS com-
promise does not imply that an attacker can automatically
impersonate the user. We do not consider denial of service
attack because a compromised OS can always stop the user
from making requests.

Since AINT requires Intel SGX and assumes I/O data from
the hardware carries user intention, we assume that com-
puter hardware including the processor and peripherals are
not compromised. AINT also requires the use of a hypervisor,
therefore a hypervisor is trusted.

Even though AINT aims to ensure proper user perception,
we still require user cautiousness so that the user will carry
out only intended actions under properly generated context.
A careless user can claim any request to be unintended. Fur-
ther, we trust the service providers that they do not send
malicious data to the users.

Phishing, where user perception may be affected by an im-
personating service, cannot be directly addressed, since AINT
is application initiated. An impersonating application can
simply skip the initiation of the AINT session. However, we
note that even though AINT does not provide anti-phishing

2

Peripherals

OS

Hypervisor

Remote Servers

CLIENT

REMOTE

Trusted

Untrusted

APP App Enclave

1 2

3

4

6

Monitor

5

Figure 1: AINT overview.

protection to the user, it still provides the anti-bot guarantees
to the service.
Goals. For a request received by a service, AINT ensures
the request is 1) user-intended: a physical human initiated
and requested the service. 2) integrity-protected: untampered
during generation and transmission. 3) authenticity-protected:
originates from the same machine where AINT resides.

3 DESIGN
AINT acquires three pieces of information about the request:
a) inputs that the user provided to the client, b) the context
under which those inputs were provided and c) an execution
guarantee that user inputs were correctly transformed into
a service request. AINT needs all three to achieve its goals.
(a) and (b) together conclude that the user, under a proper
context, intended a particular action. By combining with
(c), we can confirm that a user-intended action is properly
translated into a request. We note that (a) plus (c) defeats Exe-
cution Tampering, while (b) plus (c) defeats Context Forgery.
To sum up, AINT’s design involves three requirements:
• Inputs: capture authentic user inputs. Section 3.2.
• Context: capture and validate context user sees against
service-provided data and user inputs, and bind con-
text to the service request. Section 3.3.
• Request Generation: a request is generated with au-
thentic inputs and the execution is integrity protected.
Section 3.4.

3.1 System Overview
The overview of AINT is shown in Figure 1. Before AINT
runs, the service provider deploys an App Enclave on the
client. App Enclave, after initiation, immediately attests its
integrity to the remote server. The service data is sent to the
application from the service provider. We define service data

as files that service providers send to users for immediate
interaction. In minimum, that includes 1) the construction of
user context and 2) the handling of user interaction. In the
case of a browser application, service data includes HTML,
JavaScript and CSS files.
The hypervisor waits for the application to trigger an

AINT secure session ➀. To do so, the application must sup-
ply service data, as received from the service provider. The
service data is sent to App Enclave ➁, which checks its au-
thenticity and integrity by verifying its signature. During
the secure session, the hypervisor records user inputs from
peripherals and user context from display monitors ➂, signs
and sends them to App Enclave ➃. The App Enclave then
continuously verifies that the user context is consistent with
the expected user context by verifying two things: 1) the pre-
sentation of service data through the use of an AINT function
(Section 3.3.2) and 2) the presentation of input previously
collected by the hypervisor (Section 3.3.3).
The application must also notify AINT in order to finish

the secure session ➄. At the end of the session, if it can
determine that no context tampering has occurred, AINT
will carry out request generation inside App Enclave and
send the final attested service request to the remote server➅.
Since the remote server knows that the request comes from
a previously attested enclave, it gains confidence that the
service request follows the user intention.

3.2 User Inputs
We consider all data received locally via user interaction
as user inputs. AINT makes use of the input in two ways,
1) context verification and 2) generation of the final service
request. AINT not only ensures the integrity and authenticity
of input data when they are being collected, it must also
ensure input data remains integrity protected after collection.

AINT requires a way for triggering a secure session, such
as a hypercall from a client application. This hypercall also
provides the signed raw service data necessary for AINT to
check the user’s context and as a part of the service request
specification, indicates what inputs need to be collected. In
our payment example, those inputs would include keyboard
inputs (i.e., when the user enters the name of the payee and
the amount), as well as mouse movements and clicks (i.e., if
the user is instead required to select from a list of payees,
and when the user clicks the “Pay” button to submit the
form). These inputs are recorded and form the content of the
Attested Intention for this payment request.

Since user inputs are completely captured by the hyper-
visor, to allow App Enclave to verify the trustworthiness of
the hypervisor and to perform trusted hypervisor boot and
attest to the integrity of the hypervisor, AINT uses a trusted
computing mechanism, such as Intel TXT or AMD SVMwith

3

a TPM [36, 37].

3.3 Context
One of the novel aspects of AINT is the collection and vali-
dation of context to help verify a request. We define context
as the rendering of service data, as well as the rendering of
the user inputs (i.e., keyboard input being echoed back to
the user). Altered user inputs may affect user perception as
shown previously (e.g., failing to echo a zero in our example).
Collecting and validating inputs allows AINT to stop context
forgery attacks where an attacker splits the context in which
a user generates a request from the actual request sent by the
client and guarantees what the user sees is what is supposed
to be seen. Context verification is done securely inside App
Enclave and AINT ensures that requests are only generated
from a proper context receives attestation, which effectively
binds context to the request.

3.3.1 Context Acquisition. Naïvely, one might consider
a screen capture of what is on the screen when the user
clicks the “Pay” button, to be consistent with what the user
sees and correctly capturing the intention. However, this is
overly simplistic and does not take into account the tempo-
ral integrity of the display. In particular, a screenshot only
captures the screen at a particular moment in time. Given
the speed of computer systems, a compromised browser or
web page could easily show one screen to a user (i.e., one
where the Alice is paying $1 to Bob) and then just as the
user is about to click the “Pay” button, change it to a screen
consistent with the forged request (i.e., pay $100 to Mallory)
so that it appears to App Enclave that Alice intended to pay
$100 to Mallory instead of $1 to Bob. Further, the browser
could switch the screen back just after the click faster than
a human Alice could detect. As a result, in this scenario, it
is necessary to send a continuous video capture of the user
filling in the appropriate form in the payment application to
correctly certify the request.
Like user inputs, user context is specific to the type of

interaction being verified and can include other passive mea-
surements about what the user perceives at the time. For
example, on a smartphone client, this could even include the
user’s location, other running applications, etc. to verify the
user’s context. We note that while a user’s screen contents
and location contain private information, the App Enclave
verifies this entirely on the device, thus ensuring that privacy
is protected. We also note that while SGX is specific to Intel
processors, similar functionality is provided by TrustZone
on ARM processors, which are more commonly found on
smartphones.
There are various methods for acquiring user context,

ranging from pure software approach such as hypervisor-
based virtualized GPU to dedicated hardware such as an

HDMI grabber, and co-designs such as Nvidia ShadowPlay [28]
and AMD ReLive [3]. These approaches vary in terms of cost,
slow down to the machine and TCB size.

3.3.2 Service Data Verification. The verification of ser-
vice data is done inside App Enclave, through the use of an
AINT function, a function that determines if a rendered dis-
play is rendered properly. The AINT function is application-
specific and provided by the service. The trusted hypervisor
must submit context and inputs, while the application must
submit raw service data to App Enclave. Before checking,
App Enclave must verify the integrity and authenticity of
these inputs, for example by checking that the HTML is
signed by the server, and context and that user inputs are
signed by the hypervisor.
To verify displayed context, our current approach is to

conduct a pixel-by-pixel comparison between service pre-
rendered context with the captured context. However, many
applications, including browsers, may not be entirely deter-
ministic, and even a simple HTML pagemay have external de-
pendencies (i.e., other pages or components it must load) that
can affect its appearance. In addition, local optimization such
as Windows ClearType [26], a form of anti-aliasing, adds ad-
ditional non-deterministicity and renders the enclave’s pixel-
by-pixel comparison ineffective. The verification model that
App Enclave uses must be able to distinguish between in-
nocuous and malicious differences in the recorded context
and client-generated request, and the context and request
expected by the model. In the case of a payment application,
the user interface is likely deterministic enough that a simple
image similarity comparison [5, 32] of frames may be suffi-
cient to check that the user context was rendered correctly.
Predictable differences, such as current time or content from
external dependencies, can be specifically ignored by the
execution model.
Another option for the AINT function is to run machine

learning-based image segmentation to extract the objects
from the context, and compare their size and position with
the specification from the HTML files from service providers.
However, previous works have shown that machine learning
techniques are vulnerable to adversarial attacks, especially
image-based models [7, 30].

3.3.3 InputVerification. With proper context verification,
input verification can be carried out similarly. Instead of pe-
riodically validating the service data rendering, input verifi-
cation is triggered whenever a user input event occurs and
maintained afterwards.

Implementing AINT using SGX and a trusted hypervisor
faces the same semantic gap challenges that previous systems
that used hypervisors for security faced [8, 18]. However,
while previous systems have primarily dealt with inferring
OS-level information without having to trust the OS [22],

4

the challenge here is to infer what context the user sees and
what input they are entering. As an example, consider the
case of mouse input. Mouse signals are not transmitted as
absolute coordinates, but as relative offsets to the current
mouse position, which is maintained by the OS. Moreover,
since the OS is not trusted, the hypervisor cannot trust the
position of the mouse reported by the OS. While the hyper-
visor could continuously monitor relative updates from the
mouse hardware and maintain its own mouse position, there
are many events that could cause the hypervisor’s view of
the mouse to become desynchronized from that of the OS’s,
which is what is perceived by the user. For example, certain
keyboard shortcuts may cause the mouse cursor to snap to
a new position. Without full access to the state of the OS
graphic user interface, the hypervisor would not be able to
compute the new mouse position. We propose a general ap-
proach where the hypervisor requests the OS to force the
internal state to a well-known value and thus remove the se-
mantic gap for the duration of an AINT session, an approach
we call semantic synchronization. For example, for the mouse,
the hypervisor can ask the OS to reset the mouse pointer to
a known location at the beginning of the secure session. A
malicious OS that ignores this request will cause a mismatch
between how the inputs are interpreted by the hypervisor
and the actions recorded in the user context, which will be
detected by the verification algorithm.
Not all input methods can be solved with semantic syn-

chronization; certain input types require access to the cap-
tured context. For instance, clipboard paste is an inputmethod
that inserts previously copied text (we assume text for sim-
plicity). To accurately capture the semantic meaning (text
being pasted) of the paste action, at the time of copy, AINT
must capture the currently highlighted text. Assuming copy
always occurs while AINT is running (within or outside of
the secure session), AINT must examine every frame of the
captured context prior to the copy action searching for high-
lighted text. This is not only complex and error-prone, but
also introduces a large amount of code. Even with that, cer-
tain events, such as web page’s "Click to Copy" JavaScript,
may cause AINT’s view of the copied text to be desynchro-
nized from the OS’s. If AINT were to properly handle all
types of input methods such as copy & paste, backspace,
auto-complete and virtual keyboard, it will hugely increase
the complexity and the trusted computing base of AINT.
Therefore, AINT currently does not implement checks for
these input methods and prohibits the use of them during a
secure session.

3.4 Request Generation
The request generation code is part of the service data sub-
mitted by the application, but validated by AINT before

execution. For instance, in the payment service example, the
request generation code collects fields such as transaction
amount and recipient and generates a service request with
signed values for server processing (similar to the JavaScript
handlers). AINT takes inputs from the hypervisor and per-
forms execution inside an Intel SGX enclave. This defeats
execution tampering without trusting the entire software
stack.
One might think that instead of generating the service

request inside App Enclave, it can outsource request genera-
tion to the application and only verify generated request [21]
against captured inputs and context. The intuition driving
this is that verifying an execution consists of less code than
doing the execution, thus reducing the trusted computing
base (TCB) of the App Enclave. However, the verification pro-
posed in [21] is restricted to only simple range checks, and
it can be challenging to verify all inputs accurately and com-
prehensively, thus limiting the range of functions that AINT
can check. For instance, for some complex input processing
functions, the only sure check may be to redo the entire
computation, thus negating any possible TCB savings. In
contrast, running request generation in the enclave achieves
security, simplicity and wider applicability. Therefore, with
the trade-off between applicability and TCB, AINT chooses
applicability.

3.5 Privacy
By processing user inputs and context locally, App Enclave
ensures that this information does not leave the client de-
vice. At the same time, AINT must be entirely trusted by
the server since the server never sees the raw user input
and context. This means that App Enclave must be mutually
trusted by both the user and the server. This requirement
is satisfied by trusted computing, and in our example, by
SGX attestation, but the requirement could be satisfied by
a number of trusted computing primitives such as TXT or
TrustZone. We envision that the server specifies App En-
clave, as the server must develop the content-specific AINT
function. To allow users to trust server’s code, a trusted third
party should verify all code inside App Enclaves to ensure
service developed code are indeed privacy preserving.
Previous works have proposed using trusted computing

as a trusted third party to verify values [1]. Most recently,
Glimmer proposed to use SGX to verify and cryptograph-
ically blind information so that it is not leaked to Internet
services [21]. However, with a trusted hypervisor, AINT is
able to verify human interactions and thus provide much
stronger guarantees than Glimmer, which without trusted
user inputs and context, can only sanity check the validity
of user inputs (for example by checking that the inputs fall
within a valid range).

5

4 TRUSTED COMPUTING BASE (TCB)
To maintain a small TCB for the hypervisor, while there exist
minimal hypervisors [33] and even formally verified hyper-
visors [37], whose implementations may contain 500K lines
of code or less, such hypervisors typically do not virtualize
hardware to keep the TCB small, but instead pass it through
to drivers in the guest OS. However, in dealing with stateful
devices, it is tempting to simply duplicate the entire driver
stack inside the hypervisor so that it can replicate the state
changes in the OS that result from inputs from the hardware
device. Some device drivers may contain millions of lines of
code, bloating the TCB of an otherwise small hypervisor [38].
Instead, we propose that the hypervisor intercepts and emu-
lates only the relevant portions of the drivers. For example,
in complex I/O such as USB, the hypervisor does not need
to include the entire USB stack, but just the portions that
interface with the USB hardware to access the raw commu-
nication data. In combination with semantic sync events,
we believe that the semantic gap can be bridged without
large increases in the TCB of the trusted hypervisor. To do
so, AINT statically splits the driver [14, 38], and outsources
non-critical operations such as bus enumeration and device
hot-plug to the general-purpose OS and verifies the result.

AINT TCB includes drivers, as AINT depends on them to
intercept and record user input. Moving driver functionality
required for AINT into the hypervisor reduces the TCB, as
vulnerabilities in the driver code that is not critical to AINT
can no longer impact AINT security guarantees [27]. For
example, vulnerabilities in unrelated driver functionality,
such as power management, or in other unrelated drivers [9,
35] cannot affect the portion of code that has been moved
into the hypervisor to implement AINT.

5 USE CASES
In addition to ensuring the secure flow of user intention to a
service request, we detail some use cases of AINT.

CAPTCHA is currently widely used to distinguish bots
from humans, but CAPTCHA response is not bound to the
context, allowing attacks such as CAPTCHA farms [11]. To
make matters worse, CAPTCHAs make systems less usable:
according to Bursztein et al. [6], in some instances, humans
may only be able to correctly solve visual CAPTCHAs as
low as 61% of the time, and audio CAPTCHAs 31% of the
time. AINT can be used to implement a user-requirement-
free CAPTCHA replacement. Specifically, AINT tightly binds
user context and physical activities to a particular machine,
and thus the network request from the machine. This de-
feats CAPTCHA farms, where request are split from the
CAPTCHA response. Bots cannot harvest user activities, be-
cause AINT enforces the right context when a request is
generated. Since all user activities are examined locally on

the user device, there is no privacy concern compared to
transitional CAPTCHA services [29].

Remote Invigilation is a type of activity where a test
taker is being invigilated remotely. The invigilator must en-
sure the absence of unauthorized aids, but a test taker may
attempt to cheat by modifying the local software, such as
redirecting the live video feed to a previous recording. Even
though AINT requires users to be cautious and acts accord-
ingly to the context, we note that it does not conflict with the
assumption here because, so long as the other assumptions
hold (i.e., trustworthiness of the hardware)—AINT’s goal,
in this case, is to correctly verify user interactions (is the
test taker trying to cheat ?). An invigilator has to require 1)
a secure system state, meaning the absence of malware 2)
authentication of the test taker’s action and 3) the absence
of unauthorized aids. AINT naturally satisfies the first two
requirements due to its threat model and the ability to attest
authentic user inputs. The third requirement is satisfied by
implementing plagiarism detection inside the AINT func-
tion. For instance, the AINT function checks the context
for any unauthorized window or window switching. AINT
has several advantages: 1) reliable software level protection,
AINT can protect itself from OS level threat and 2) the com-
putation happens on client devices saving server resources.
However, AINT requires the trustworthiness of the hardware
and thus is unable to provide any guarantee if the candidate
compromises the hardware.

6 FUTUREWORK AND CONCLUSION
Our current efforts are focused on generalizing the design
and implementation of the AINT function to cover a wide
range of scenarios, and addressing the semantic gap to reli-
ably record user inputs and context without having to dupli-
cate the complete driver stack in the trusted hypervisor.
In conclusion, we detailed two types of attacks, execu-

tion tampering and context forgery, that can violate user
intention and alter service requests. We proposed Attested
Intention as a solution to both attacks, with the idea of us-
ing user inputs and context to verify service requests. This
enables a remote service provider to gain assurance that the
request is user intended. AINT runs entirely on user client to
preserve privacy. AINT leverages a small trusted hypervisor
and Intel SGX to provide assurance even under full client OS
compromises.

ACKNOWLEDGEMENT
Special thanks to Piaoyao Shi for her thoughtful comments
on an earlier draft of the paper. The authors would also like
to thank Petros Maniatis for early inspiration for this work.
This work is supported in part by an NSERC Discovery Grant
(RGPIN-2018-059) and by an OGS Graduate Scholarship.

6

REFERENCES
[1] Martín Abadi. 2004. Trusted Computing, Trusted Third Parties, and

Verified Communications. In Security and Protection in Information
Processing Systems, Yves Deswarte, Frédéric Cuppens, Sushil Jajodia,
and Lingyu Wang (Eds.). Springer US, Boston, MA, 291–308. https:
//users.soe.ucsc.edu/~abadi/Papers/verif .pdf

[2] AMD. 2018. AMD64 Architecture Programmer’s Manual Volume
2: System Programming. Retrieved Jan 17, 2019 from https://
www.amd.com/system/files/TechDocs/24593.pdf

[3] AMD. 2018. How to Capture and Stream Gameplay Using Radeon
ReLive. Retrieved July 6, 2019 from https://www.amd.com/en/
support/kb/faq/dh-023

[4] ARM. 2009. Arm Security Technology - Building a Se-
cure System using TrustZone Technology. Retrieved
Jan 16, 2019 from http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.prd29-genc-009492c/ch01s02s01.html

[5] Ashwin Swaminathan, Yinian Mao, and Min Wu. 2006. Robust and
secure image hashing. IEEE Transactions on Information Forensics
and Security 1, 2 (June 2006), 215–230. https://doi.org/10.1109/
TIFS.2006.873601

[6] Elie Bursztein, Steven Bethard, John C. Mitchell, Dan Jurafsky, and
Céline Fabry. 2010. How Good are Humans at Solving CAPTCHAs?
A Large Scale Evaluation. In IEEE Symposium on Security and Privacy.
Oakland, CA, USA. http://ieeexplore.ieee.org/document/5504799

[7] Nicholas Carlini and David A. Wagner. 2016. Towards Evaluating
the Robustness of Neural Networks. CoRR abs/1608.04644 (2016).
arXiv:1608.04644 http://arxiv.org/abs/1608.04644

[8] Peter M. Chen and Brian D. Noble. 2001. When virtual is better than
real [operating system relocation to virtual machines]. In Proceedings
Eighth Workshop on Hot Topics in Operating Systems. 133–138. https:
//doi.org/10.1109/HOTOS.2001.990073

[9] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. 2001. An Empirical Study of Operating Systems Errors. In
Proceedings of the Eighteenth ACM Symposium on Operating Systems
Principles (SOSP ’01). ACM,NewYork, NY, USA, 73–88. https://doi.org/
10.1145/502034.502042

[10] Weidong Cui, Randy H. Katz, and Wai-tian Tan. 2005. BINDER:
An Extrusion-based Break-In Detector for Personal Com-
puters. In Proceedings of the 2005 USENIX Annual Techni-
cal Conference. USENIX Association, Berkeley, CA, USA.
https://www.microsoft.com/en-us/research/publication/binder-an-
extrusion-based-break-in-detector-for-personal-computers/

[11] Dancho Danchev. 2018. Inside India’s CAPTCHA solving economy.
Retrieved July 6, 2019 from https://www.zdnet.com/article/inside-
indias-captcha-solving-economy/

[12] Saba Eskandarian, Jonathan Cogan, Sawyer Birnbaum, Peh Chang
Brandon, Dillon Franke Franke, Forest Fraser, Gaspar Garcia, Eric Gong,
Hung T. Nguyen, Taresh K. Sethi, Vishal Subbiah, Michael Backes,
Giancarlo Pellegrino, and Dan Boneh. 2019. Fidelius: Protecting User
Secrets from Compromised Browsers. In 2019 2019 IEEE Symposium on
Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA,
USA. https://doi.org/10.1109/SP.2019.00036

[13] Yanick Fratantonio, Chenxiong Qian, Simon P Chung, and Wenke Lee.
2017. Cloak and dagger: from two permissions to complete control of
the UI feedback loop. In 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 1041–1057. https://ieeexplore.ieee.org/document/7958624

[14] Vinod Ganapathy, Matthew J. Renzelmann, Arini Balakrishnan,
Michael M. Swift, and Somesh Jha. 2008. The Design and Imple-
mentation of Microdrivers. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XIII). ACM, New York, NY, USA, 168–178.

https://doi.org/10.1145/1346281.1346303
[15] Ramakrishna Gummadi, Hari Balakrishnan, Petros Maniatis, and

Sylvia Ratnasamy. 2009. Not-a-Bot: Improving Service Availability
in the Face of Botnet Attacks. In Proceedings of the 6th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’09).
USENIX Association, Berkeley, CA, USA, 307–320. http://dl.acm.org/
citation.cfm?id=1558977.1558998

[16] Lin-Shung Huang, Alex Moshchuk, Helen J. Wang, Stuart Schecter,
and Collin Jackson. 2012. Clickjacking: Attacks and Defenses. In
Presented as part of the 21st USENIX Security Symposium (USENIX Se-
curity 12). USENIX, Bellevue, WA, 413–428. https://www.usenix.org/
conference/usenixsecurity12/technical-sessions/presentation/huang

[17] Intel. 2010. Intel® Trusted Execution Technology: White Paper.
Retrieved Nov 15, 2018 from https://www.intel.com/content/
www/us/en/architecture-and-technology/trusted-execution-
technology/trusted-execution-technology-security-paper.html

[18] Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E. Porter,
and Radu Sion. 2014. Sok: Introspections on Trust and the Semantic
Gap. In IEEE Symposium on Security and Privacy (SP). IEEE, 605–620.
https://ieeexplore.ieee.org/document/6956590

[19] Yeongjin Jang, Simon P Chung, Bryan D Payne, and Wenke Lee.
2014. Gyrus: A Framework for User-Intent Monitoring of Text-
based Networked Applications.. In Proceedings of the 2014 Network
and Distributed System Security Symposium. https://www.ndss-
symposium.org/ndss2014/programme/gyrus-framework-user-
intent-monitoring-text-based-networked-applications/

[20] Wenhao Li, Shiyu Luo, Zhichuang Sun, Yubin Xia, Long Lu, Haibo
Chen, Binyu Zang, and Haibing Guan. 2018. VButton: Practical At-
testation of User-driven Operations in Mobile Apps. In Proceedings
of the 16th Annual International Conference on Mobile Systems, Appli-
cations, and Services (MobiSys ’18). ACM, New York, NY, USA, 28–40.
https://doi.org/10.1145/3210240.3210330

[21] David Lie and Petros Maniatis. 2017. Glimmers: Resolving the Pri-
vacy/Trust Quagmire. In Proceedings of the 16thWorkshop on Hot Topics
in Operating Systems (HotOS ’17). ACM, New York, NY, USA, 94–99.
https://doi.org/10.1145/3102980.3102996

[22] Lionel Litty, H Andrés Lagar-Cavilla, and David Lie. 2008. Hypervisor
Support for Identifying Covertly Executing Binaries. In Proceedings
of the 17th Conference on Security Symposium (SS’08). USENIX Asso-
ciation, San Jose, CA, 243–258. https://dl.acm.org/citation.cfm?id=
1496728

[23] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam
Datta, Virgil Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient TCB
Reduction and Attestation. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy (SP ’10). IEEE Computer Society, Washington,
DC, USA, 143–158. https://doi.org/10.1109/SP.2010.17

[24] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter,
and Hiroshi Isozaki. 2008. Flicker: An Execution Infrastructure for Tcb
Minimization. In Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008 (Eurosys ’08). ACM, New York,
NY, USA, 315–328. https://doi.org/10.1145/1352592.1352625

[25] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013.
Innovative Instructions and Software Model for Isolated Execution. In
Proceedings of the 2Nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy (HASP ’13). ACM, New York,
NY, USA, Article 10, 1 pages. https://doi.org/10.1145/2487726.2488368

[26] Microsoft. 2017. Microsoft ClearType overview. Retrieved July 6, 2019
from https://docs.microsoft.com/en-us/typography/cleartype/

[27] Subhas C. Misra and Virendra C. Bhavsar. 2003. Relationships Between
Selected Software Measures and Latent Bug-density: Guidelines for

7

https://users.soe.ucsc.edu/~abadi/Papers/verif.pdf
https://users.soe.ucsc.edu/~abadi/Papers/verif.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/en/support/kb/faq/dh-023
https://www.amd.com/en/support/kb/faq/dh-023
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch01s02s01.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch01s02s01.html
https://doi.org/10.1109/TIFS.2006.873601
https://doi.org/10.1109/TIFS.2006.873601
http://ieeexplore.ieee.org/document/5504799
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1608.04644
https://doi.org/10.1109/HOTOS.2001.990073
https://doi.org/10.1109/HOTOS.2001.990073
https://doi.org/10.1145/502034.502042
https://doi.org/10.1145/502034.502042
https://www.microsoft.com/en-us/research/publication/binder-an-extrusion-based-break-in-detector-for-personal-computers/
https://www.microsoft.com/en-us/research/publication/binder-an-extrusion-based-break-in-detector-for-personal-computers/
https://www.zdnet.com/article/inside-indias-captcha-solving-economy/
https://www.zdnet.com/article/inside-indias-captcha-solving-economy/
https://doi.org/10.1109/SP.2019.00036
https://ieeexplore.ieee.org/document/7958624
https://doi.org/10.1145/1346281.1346303
http://dl.acm.org/citation.cfm?id=1558977.1558998
http://dl.acm.org/citation.cfm?id=1558977.1558998
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/huang
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/huang
https://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
https://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
https://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
https://ieeexplore.ieee.org/document/6956590
https://www.ndss-symposium.org/ndss2014/programme/gyrus-framework-user-intent-monitoring-text-based-networked-applications/
https://www.ndss-symposium.org/ndss2014/programme/gyrus-framework-user-intent-monitoring-text-based-networked-applications/
https://www.ndss-symposium.org/ndss2014/programme/gyrus-framework-user-intent-monitoring-text-based-networked-applications/
https://doi.org/10.1145/3210240.3210330
https://doi.org/10.1145/3102980.3102996
https://dl.acm.org/citation.cfm?id=1496728
https://dl.acm.org/citation.cfm?id=1496728
https://doi.org/10.1109/SP.2010.17
https://doi.org/10.1145/1352592.1352625
https://doi.org/10.1145/2487726.2488368
https://docs.microsoft.com/en-us/typography/cleartype/

Improving Quality. In Proceedings of the 2003 International Confer-
ence on Computational Science and Its Applications: PartI (ICCSA’03).
Springer-Verlag, Berlin, Heidelberg, 724–732. http://dl.acm.org/
citation.cfm?id=1756748.1756832

[28] Nvidia. 2017. Record and Capture your Greatest Gaming Moments.
Retrieved July 6, 2019 from https://www.nvidia.com/en-us/geforce/
geforce-experience/shadowplay/

[29] Lara O’Reilly. 2015. Google’s new CAPTCHA security lo-
gin raises ’legitimate privacy concerns’. Retrieved Dec 7,
2018 from https://www.businessinsider.com.au/google-no-captcha-
adtruth-privacy-research-2015-2

[30] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami. 2017. Practical Black-Box
Attacks Against Machine Learning. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security (ASIA CCS
’17). ACM, New York, NY, USA, 506–519. https://doi.org/10.1145/
3052973.3053009

[31] Andrea Possemato, Andrea Lanzi, Simon Pak Ho Chung, Wenke Lee,
and Yanick Fratantonio. 2018. ClickShield: Are You Hiding Some-
thing? Towards Eradicating Clickjacking on Android. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1120–1136.

[32] Ramarathnam Venkatesan, S.-M Koon, Mariusz Jakubowski, and Pierre
Moulin. 2000. Robust image hashing. In Proceedings 2000 International
Conference on Image Processing (Cat. No.00CH37101), Vol. 3. 664–666
vol.3. https://doi.org/10.1109/ICIP.2000.899541

[33] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa
Omote, Shoichi Hasegawa, Takashi Horie, Manabu Hirano, Kenichi

Kourai, Yoshihiro Oyama, Eiji Kawai, Kenji Kono, Shigeru Chiba, Ya-
sushi Shinjo, and Kazuhiko Kato. 2009. BitVisor: A Thin Hyper-
visor for Enforcing I/O Device Security. In Proceedings of the 2009
ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE ’09). ACM, New York, NY, USA, 121–130.
https://doi.org/10.1145/1508293.1508311

[34] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Haining Wang. 2015.
TrustICE: Hardware-Assisted Isolated Computing Environments on
Mobile Devices. In 2015 45th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks. 367–378. https://doi.org/
10.1109/DSN.2015.11

[35] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. 2003. Im-
proving the Reliability of Commodity Operating Systems. In Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems
Principles (SOSP ’03). ACM, New York, NY, USA, 207–222. https:
//doi.org/10.1145/945445.945466

[36] Trusted Computing Group. 2016. TPM 2.0 Library Specification.
Retrieved Nov 15, 2018 from https://trustedcomputinggroup.org/
resource/tpm-library-specification/

[37] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, James
Newsome, and Anupam Datta. 2013. Design, Implementation and
Verification of an eXtensible and Modular Hypervisor Framework. In
Proceedings of the 2013 IEEE Symposium on Security and Privacy (SP
’13). IEEE Computer Society, Washington, DC, USA, 430–444. https:
//doi.org/10.1109/SP.2013.36

[38] Zongwei Zhou, Miao Yu, and Virgil D. Gligor. 2014. Dancing with
Giants: Wimpy Kernels for On-Demand Isolated I/O. In 2014 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society, Washington,
DC, USA, 308–323. https://doi.org/10.1109/SP.2014.27

8

http://dl.acm.org/citation.cfm?id=1756748.1756832
http://dl.acm.org/citation.cfm?id=1756748.1756832
https://www.nvidia.com/en-us/geforce/geforce-experience/shadowplay/
https://www.nvidia.com/en-us/geforce/geforce-experience/shadowplay/
https://www.businessinsider.com.au/google-no-captcha-adtruth-privacy-research-2015-2
https://www.businessinsider.com.au/google-no-captcha-adtruth-privacy-research-2015-2
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1109/ICIP.2000.899541
https://doi.org/10.1145/1508293.1508311
https://doi.org/10.1109/DSN.2015.11
https://doi.org/10.1109/DSN.2015.11
https://doi.org/10.1145/945445.945466
https://doi.org/10.1145/945445.945466
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://doi.org/10.1109/SP.2013.36
https://doi.org/10.1109/SP.2013.36
https://doi.org/10.1109/SP.2014.27

	Abstract
	1 Introduction
	2 Threat Model and Goals
	3 Design
	3.1 System Overview
	3.2 User Inputs
	3.3 Context
	3.4 Request Generation
	3.5 Privacy

	4 Trusted Computing Base (TCB)
	5 Use Cases
	6 Future Work and Conclusion
	References

